Families of fundamental and multipole solitons in a cubic-quintic nonlinear lattice in fractional dimension

نویسندگان

چکیده

We construct families of fundamental, dipole, and tripole solitons in the fractional Schr\"{o}dinger equation (FSE)\ incorporating self-focusing cubic defocusing quintic terms modulated by factors $\cos ^{2}x$ $\sin^{2}x$, respectively. While fundamental are similar to those model with uniform nonlinearity, multipole complexes exist only presence nonlinear lattice. The shapes stability all strongly depend on L\'{e}vy index (LI)\ that determines FSE fractionality. Stability areas identified plane LI propagation constant means numerical methods, some results explained help an analytical approximation. broadest for narrowest tripoles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media

امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...

Dynamical stabilization of solitons in cubic-quintic nonlinear Schrödinger model.

We consider the existence of a dynamically stable soliton in the one-dimensional cubic-quintic nonlinear Schrödinger model with strong cubic nonlinearity management for periodic and random modulations. We show that the predictions of the averaged cubic-quintic nonlinear Schrödinger (NLS) equation and modified variational approach for the arrest of collapse coincide. The analytical results are c...

متن کامل

Multistable Solitons in the Cubic-Quintic Discrete Nonlinear Schrödinger Equation

We analyze the existence and stability of localized solutions in the one-dimensional discrete nonlinear Schrödinger (DNLS) equation with a combination of competing self-focusing cubic and defocusing quintic onsite nonlinearities. We produce a stability diagram for different families of soliton solutions, that suggests the (co)existence of infinitely many branches of stable localized solutions. ...

متن کامل

a fundamental study of "histiriographic metafiction", and "literary genres", as introduced in "new historical philosophy", and tracing them in the works of julian barnes.

abstract a fundamental study of “historio-graphic metafiction” and “literary genres”, as introduced in “new historical philosophy”, and tracing them in the works of julian barnes having studied the two novels, the porcupine and arthur & george, by julian barnes, the researcher has applied linda hutcheon’s historio-graphic metafictional theories to them. the thesis is divided into five cha...

15 صفحه اول

Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations.

We shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chaos Solitons & Fractals

سال: 2021

ISSN: ['1873-2887', '0960-0779']

DOI: https://doi.org/10.1016/j.chaos.2020.110589